Two-stage Unsupervised Feature Selection Method Oriented to Manufacturing Procedural Data
نویسندگان
چکیده
منابع مشابه
Classifier-Independent Feature Selection For Two-Stage Feature Selection
The eeectiveness of classiier-independent feature selection is described. The aim is to remove garbage features and to improve the classiication accuracy of all the practical classiiers compared with the situation where all the given features are used. Two algorithms of classiier-independent feature selection and two other conventional classiier-speciic algorithms are compared on three sets of ...
متن کاملUnsupervised Feature Selection for Text Data
Feature selection for unsupervised tasks is particularly challenging, especially when dealing with text data. The increase in online documents and email communication creates a need for tools that can operate without the supervision of the user. In this paper we look at novel feature selection techniques that address this need. A distributional similarity measure from information theory is appl...
متن کاملRobust Unsupervised Feature Selection on Networked Data
Feature selection has shown its effectiveness to prepare high-dimensional data for many data mining and machine learning tasks. Traditional feature selection algorithms are mainly based on the assumption that data instances are independent and identically distributed. However, this assumption is invalid in networked data since instances are not only associated with high dimensional features but...
متن کاملUnsupervised feature selection for sparse data
Feature selection is a well-known problem in machine learning and pattern recognition. Many high-dimensional datasets are sparse, that is, many features have zero value. In some cases, we do not known the class label for some (or even all) patterns in the dataset, leading us to semi-supervised or unsupervised learning problems. For instance, in text classification with the bag-of-words (BoW) re...
متن کاملTwo-Stage Feature Selection for Text Classification
In this paper, we focus on feature coverage policies used for feature selection in the text classification domain. Two alternative policies are discussed and compared: corpus-based and class-based selection of features. We make a detailed analysis of pruning and keyword selection by varying the parameters of the policies and obtain the optimal usage patterns. In addition, by combining the optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mechanical Engineering
سال: 2019
ISSN: 0577-6686
DOI: 10.3901/jme.2019.17.133